SLC19A3 gene

solute carrier family 19 member 3

Normal Function

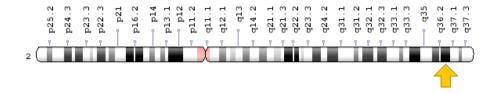
The *SLC19A3* gene provides instructions for making a protein called a thiamine transporter, which moves a vitamin called thiamine into cells. Thiamine, also known as vitamin B1, is obtained from the diet. It is involved in many cellular processes, and is necessary for proper functioning of the nervous system. Molecules made from thiamine are important in the breakdown of sugars and protein building blocks (amino acids). Thiamine is also involved in the production of certain chemicals that relay signals in the nervous system (neurotransmitters).

Health Conditions Related to Genetic Changes

biotin-thiamine-responsive basal ganglia disease

At least seven mutations in the *SLC19A3* gene have been identified in people with biotin-thiamine-responsive basal ganglia disease, a disorder that involves recurrent episodes of brain dysfunction (encephalopathy) and a variety of neurological problems that gradually get worse. *SLC19A3* gene mutations likely result in a protein with impaired ability to transport thiamine into cells, resulting in decreased absorption of the vitamin and leading to neurological dysfunction. Using medical imaging, abnormalities can be seen in several parts of the brain, including a group of structures called the basal ganglia, which help control movement, but the relationship between these specific brain abnormalities and the abnormal thiamine transporter is unknown.

Leigh syndrome


other disorders

SLC19A3 gene mutations have also been identified in individuals with other neurological disorders whose signs and symptoms overlap those of biotin-thiamine-responsive basal ganglia disease (described above). These include a disorder called early infantile lethal encephalopathy and another disorder that begins in early infancy and causes seizures and brain deterioration (atrophy). A small number of individuals with signs and symptoms similar to those of the neurological disorders Leigh syndrome and Wernicke encephalopathy have also been found to have *SLC19A3* gene mutations. It is unclear why mutations in this gene cause varying signs and symptoms in different individuals.

Chromosomal Location

Cytogenetic Location: 2q36.3, which is the long (q) arm of chromosome 2 at position 36.3

Molecular Location: base pairs 227,685,210 to 227,718,030 on chromosome 2 (Homo sapiens Annotation Release 108, GRCh38.p7) (NCBI)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- BBGD
- \$19A3_HUMAN
- solute carrier family 19 (thiamine transporter), member 3
- solute carrier family 19, member 3
- thiamine transporter 2
- THMD2
- thTr-2
- THTR2

Additional Information & Resources

GeneReviews

 Biotin-Thiamine-Responsive Basal Ganglia Disease https://www.ncbi.nlm.nih.gov/books/NBK169615

Scientific Articles on PubMed

PubMed

https://www.ncbi.nlm.nih.gov/pubmed?term=%28SLC19A3%5BTIAB%5D%29+OR+%28%28thiamine+transporter+2%5BTIAB%5D%29+OR+%28BBGD%5BTIAB%5D%29+OR+%28THTR2%5BTIAB%5D%29+OR+%28thTr-2%5BTIAB%5D%29%29+AND+%28%28Genes%5BMH%5D%29+OR+%28Genetic+Phenomena%5BMH%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+3240+days%22%5Bdp%5D

OMIM

 SOLUTE CARRIER FAMILY 19 (THIAMINE TRANSPORTER), MEMBER 3 http://omim.org/entry/606152

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology http://atlasgeneticsoncology.org/Genes/SLC19A3ID45635ch2q36.html
- ClinVar https://www.ncbi.nlm.nih.gov/clinvar?term=SLC19A3%5Bgene%5D
- HGNC Gene Family: Solute carriers http://www.genenames.org/cgi-bin/genefamilies/set/752
- HGNC Gene Symbol Report http://www.genenames.org/cgi-bin/gene_symbol_report?q=data/ hgnc_data.php&hgnc_id=16266
- NCBI Gene https://www.ncbi.nlm.nih.gov/gene/80704
- UniProt http://www.uniprot.org/uniprot/Q9BZV2

Sources for This Summary

- Alfadhel M, Almuntashri M, Jadah RH, Bashiri FA, Al Rifai MT, Al Shalaan H, Al Balwi M, Al Rumayan A, Eyaid W, Al-Twaijri W. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013 Jun 6;8:83. doi: 10.1186/1750-1172-8-83. Review.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23742248

 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691666/
- Debs R, Depienne C, Rastetter A, Bellanger A, Degos B, Galanaud D, Keren B, Lyon-Caen O, Brice A, Sedel F. Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Arch Neurol. 2010 Jan;67(1):126-30. doi: 10.1001/archneurol.2009.293.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20065143
- El-Hajj TI, Karam PE, Mikati MA. Biotin-responsive basal ganglia disease: case report and review
 of the literature. Neuropediatrics. 2008 Oct;39(5):268-71. doi: 10.1055/s-0028-1128152. Epub 2009
 Mar 17. Review.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/19294600
- Gerards M, Kamps R, van Oevelen J, Boesten I, Jongen E, de Koning B, Scholte HR, de Angst I, Schoonderwoerd K, Sefiani A, Ratbi I, Coppieters W, Karim L, de Coo R, van den Bosch B, Smeets H. Exome sequencing reveals a novel Moroccan founder mutation in SLC19A3 as a new cause of early-childhood fatal Leigh syndrome. Brain. 2013 Mar;136(Pt 3):882-90. doi: 10.1093/brain/awt013. Epub 2013 Feb 18.
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23423671

- Kevelam SH, Bugiani M, Salomons GS, Feigenbaum A, Blaser S, Prasad C, Häberle J, Baric I, Bakker IM, Postma NL, Kanhai WA, Wolf NI, Abbink TE, Waisfisz Q, Heutink P, van der Knaap MS. Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain. 2013 May;136(Pt 5):1534-43. doi: 10.1093/brain/awt054. Epub 2013 Mar
 - Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23482991
- OMIM: SOLUTE CARRIER FAMILY 19 (THIAMINE TRANSPORTER), MEMBER 3 http://omim.org/entry/606152
- Tabarki B, Al-Shafi S, Al-Shahwan S, Azmat Z, Al-Hashem A, Al-Adwani N, Biary N, Al-Zawahmah M, Khan S, Zuccoli G. Biotin-responsive basal ganglia disease revisited: clinical, radiologic, and genetic findings. Neurology. 2013 Jan 15;80(3):261-7. doi: 10.1212/WNL.0b013e31827deb4c. Epub 2012 Dec 26.

Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/23269594

Reprinted from Genetics Home Reference:

https://ghr.nlm.nih.gov/gene/SLC19A3

Reviewed: January 2014 Published: March 21, 2017

Lister Hill National Center for Biomedical Communications U.S. National Library of Medicine National Institutes of Health Department of Health & Human Services